Immune systems in computer science / Imunski sistemi v računalništvu
Karin Ljubič, Iztok Fister Jr. in Iztok Fister
Anali PAZU, 3 (2013), št. / No. 1, strani / pages 8-14
Celotno besedilo / Full text (PDF)
Abstract: A simplified description of the immune system is as follows: this is an organic system intended for protecting the host organism from the threats posed to it from pathogens and toxic substances. The architecture of the immune system is such that a series of defensive layers protect the host. Once the pathogen makes it inside the host, it must contend with the innate and adaptive immune system. These two immunological sub-systems are comprised of several types of cells and molecules produced by specialized organs and processes to address the self non-self problem. Artificial Immune Systems (AIS) are computational models, based on natural immune systems. They tend to solve specific problems in computer science by resembling the natural mechanisms. These systems are more widely applied within problem domains like clustering, pattern recognition, classification, optimization, and machine learning. Modern AIS are inspired by one of three sub-fields: clonal selection, negative selection, and immune network algorithms. In computer science, the clonal selection pattern can be used for pattern matching and optimization. The negative selection algorithm was designed for change detection, novelty detection, and intrusion detection. Immune network algorithms are inspired by the immune network theory of the acquired immune system and it is an upgrade of the clonal selection theory. The objective of the immune network process is to prepare a repertoire of discrete pattern detectors for a given problem domain, where better performing solutions suppress low affinity solutions within the same network. This is an interactive process of exposing the pattern to external information to which it responds. This article explains the biological background, the mechanisms of AIS, and presents their real-world applications. It presents an overview of those important applications of AIS for solving problems from problem domains like data analysis, anomaly detection, intrusion detection, and others.
Key words: natural immune system, artificial immune system, antigen, antibody, algorithm, somatic hyper-mutation.
Povzetek: Poenostavljeno opredelimo imunski sistem kot organski sistem, ki je namenjen za zaščito gostiteljevega organizma pred patogeni in toksičnimi snovmi, ki ga ogrožajo. Sestava imunskega sistema temelji na vrsti obrambnih plasti, ki ščitijo gostitelja. Ko patogen uspe prodreti v organizem, se mora spopasti s prirojeno in pridobljeno imunostjo. Ta dva podsistema sestojita iz mreže medsebojno sodelujočih celic in molekul, ki jih proizvajajo specializirani organi, in procesov, ki pomagajo organizmu razlikovati lastne molekule od tujih. Umetni imunski sistemi so računalniški modeli, ki temeljijo na naravnih imunskih sistemih. Z refleksijo naravnih mehanizmov so sposobni reševati kompleksne probleme v računalništvu. Tovrstni sistemi so široko aplicirani znotraj različnih problemov, kot so razvrščanje, optimizacija, strojno učenje in razpoznavanje vzorcev. Moderni imunski sistemi so narejeni po zgledu treh področij:klonalna selekcija, negativna selekcija in algoritmi imunskih mrež. Mehanizmi klonalne selekcije so uporabni pri optimizaciji in razpoznavanju vzorcev. Algoritmi negativne selekcije so bili zasnovani za zaznavanje sprememb in vdorov v sisteme. Algoritmi imunskih mrež predstvljajo nadgradnjo teorije klonalne selekcije in so zasnovani na modelu pridobljenega imunskega sistema. Nadgradnja teorije imunskih mrež v primerjavi s klonalno selekcijo je v dejstvu, da so rešitve z boljšimi rezultati sposobne zavreti rešitve, ki dajejo slabši rezultat pri reševanju določenega problema oz. imajo slabo afinteto prepoznavanja specifičnih vzorcev. Gre za interaktivni proces izpostavljanja sistema zunanjim informacijam, na katere se odzove. Članek pojasnjuje biološko ozadje umetnih imunskih sistemov in navaja možnosti njihove aplikacije v resničnem svetu. Predstavlja pregled pomembnih aplikacij umetnih imunskih sistemov na različnih področjih, kot so analize podatkov, odkrivanje anomalij, zaznavanje vdorov in drugi.
Ključne besede: biološki imunski sistem, umetni imunski sistem, antigen, protitelo, algoritem, somatska hipermutacija.
Vsi prispevki avtorja:
Številka revije: